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Abstract. A nonzero atomic electric-dipole moment (EDM) at a level not far from current experimental
limits would signify time-reversal violation from outside the Standard Model. EDMs are enhanced in
atoms that have octupole-deformed nuclei. We report a careful self-consistent mean-field calculation of
the time-reversal-violating nuclear Schiff moment —the quantity that induces an atomic EDM— in the
octupole-deformed nucleus >?’Ra. The self-consistent mean field in odd-A nuclei includes important effects
of core polarization. The results of the calculation are encouraging for EDM experiments in the light
actinides. Accurate calculations of Schiff moments in ordinary spherical and quadrupole-deformed nuclei
such as '®Hg are also important. We describe work in progress on this more general problem.

PACS. 11.30.Er General theory of fields and particles: Charge conjugation, parity, time reversal, and other
discrete symmetries — 21.60.Jz Nuclear structure: Hartree-Fock and random-phase approximations

1 Introduction

Experiments with kaons and B-mesons indicate that time-
reversal invariance (T') is violated at a low level. The re-
sults of these experiments can be explained by a phase
in the Cabibo-Kobayashi-Maskawa (CKM) matrix of the
Standard Model. But the absence of antimatter in our uni-
verse is evidence that T" invariance (or more precisely, CP
invariance) was badly violated long ago. The CKM phase
is unable to account for so large an effect, and so theorists
believe there must be another source of T' violation, this
one from outside the Standard Model.

As we shall see, an atom in its ground state cannot
have an electric dipole moment (EDM) without violat-
ing T'. A number of experiments have searched for atomic
EDMs, and the limits are tight. But because CKM T vio-
lation shows up in first order only in flavor-changing pro-
cesses, it should appear in atomic experiments only after
the limits are improved by 5 or 6 orders of magnitude.
The same constraint does not apply, however, to T viola-
tion in extensions to the Standard-Model. The most popu-
lar extension, supersymmetry, has many flavor-conserving
phases, making EDM experiments ideal for testing it. Al-
ready these experiments are putting serious pressure on
the theory.

Here, after some preliminaries, we argue that exper-
iments on atoms with octupole-deformed nuclei will be
more sensitive to T-violation within the nucleus than the
current best experiments. The enhancement of T violation
in these nuclei is connected with the collective violation
of intrinsic parity. This paper discusses work published by
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the author together with Jim Friar and Anna Hayes [1]
and Michael Bender, Jacek Dobacewski, Joao de Jesus,
and Piotr Olbratowski [2], and some work in progress on
spherical nuclei with Joao de Jesus.

2 T violation and EDMs
2.1 Why do EDMs require T violation?

It is obvious that for the negative-parity (P) dipole op-
erator to have a non-zero expectation value in a non-
degenerate state, P must be violated. But because states
with good J, M are not eigenstates of the T" operator, the
usual argument from “good quantum numbers” does not
work for 7. Why must it be violated as well?

Consider a state |g; J, M) (g stands for “ground”) with
no degeneracy besides the 2J + 1 spin multiplicity. Sym-
metry under rotation by 7 around the y axis implies that
for a vector operator such as d = X;e;7;,

The time reversal operator 1" takes |g : J, M) to a real
phase times |g : J,—M) (under the usual phase conven-
tions), just like rotation by 7. But d does not change un-

der T', while the rotation flips its sign. So if the system is
invariant under 7', we also have

These two equations together imply that (d) must vanish.
If T is wviolated, the argument fails because T will take
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lg : J,—M) to a state with J, —M that is not identical to
the corresponding member of the ground-state multiplet.
In that case, eq. (2) does not hold.

2.2 How objects get EDMs and why atomic EDMs
are suppressed

T-violation can work its way up from the most fundamen-
tal particles through to atoms. If the symmetry is violated
by, e.g. supersymmetry, quarks will develop T-violating
couplings, leading to effective T-violating w/N N couplings.
These in turn lead through pion exchange to an effective
two-nucleon interaction of the form

gmy
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where g is the normal strong 7NN coupling constant and
the three g’s are dimensionless isoscalar, isovector, and
isotensor T-violating 7NN couplings. This interaction can
cause the nucleus to develop an EDM, which in turn causes
an atomic EDM. The goal of the atomic experiments (and
this work) is to extract limits on the g’s from experimental
limits on an atomic EDM, or to determine them if an EDM
is observed.

Unfortunately, atomic EDMs are suppressed. Any nu-
clear EDM induced by the interaction in eq. (3) is shielded
by the electrons, which rearrange themselves to create an
electronic EDM in the opposite direction. Schiff proved [3]
that the cancellation is exact in the limit of a point-like
nucleus and nonrelativistic electrons’.

Luckily, the nucleus has a finite radius so the shielding
is not complete. It turns out, however, that after its ef-
fects are accounted for, the nuclear quantity that induces
an EDM in the electrons is not the dipole moment D, but
rather a kind of weighted dipole moment (with a correc-
tion term) called the “Schiff moment”:

1 2 _ 9
S:E;ep{rp—gR]rp, (4)

where R? is the root-mean-squared nuclear charge-density
radius. If, as one would expect, (S) ~ 0.1R?(D), then the
atomic EDM d is down from (D) by O(R? /10R%) ~ 1079,
(R4 is the atomic radius.) But the behavior of relativis-
tic Coulomb wave functions near the origin partly offsets
this terrible suppression via a factor 1022 ~ 10° in heavy
nuclei, so that the overall suppression of the atomic EDM
from shielding is only about 10~%. This number begins

L Tt may be possible to reduce or eliminate shielding in ex-
periments with “naked nuclei” [4,5].
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to approach the factor by which EDM limits on the neu-
tron are worse than atomic limits, and the nuclear Schiff
moment is more sensitive to neutral pion exchange than
the neutron EDM, so atomic experiments are currently
competitive in the search for some kinds of T' violation.

3 Enhancement by octupole deformation

We can make atomic experiments even more attractive
by finding the right atom, because some atoms are better
places to look for an EDM than others. One reason is
that octupole deformation of atomic nuclei enhances the
nuclear Schiff moment dramatically.

Since the T-violating interaction Hp is very weak, it
can be treated peturbatively, and the Schiff moment can
be written as

(8) =

m 0~ &m

Two collective effects associated with octupole deforma-
tion make this expression large. The first is the exis-
tence of parity doubling. The intrinsic state has a shape
that breaks parity symmetry. It contains both positive-
and negative-parity components, and when projected onto
good parity yields two states of opposite parity very close
to one another in energy. In 225Ra, for example, the J™ =
1/2" ground state (|0) in our notation) has a J™ =1/2~
partner |0) just 55keV higher. Since Hy is pseudoscalar,
it connects |0) and |0), and the single term with |0) as the
intermediate state dominates the sum in eq. (5). Just like
for quadrupole transitions, the transition matrix element
(0/S]0) is proportional to the intrinsic Schiff moment, so
that eq. (5) becomes, to good approximation,

(S ) ()

(8) =23

(6)

The second collective enhancement comes from robust
intrinsic Schiff moments that often are much larger than
R? times the intrinsic dipole moment. Although the in-
trinsic dipole moments in octupole-deformed nuclei are
collective, they are often quite small. The reason is that
they depend on the distribution of charge with respect to
the center of mass, and vanish when the neutron and pro-
ton densities coincide exactly. Intrinsic Schiff moments are
not subject to this kind of cancellation. As a result of this
and the parity-doubling, the laboratory Schiff moment in
a nucleus like 22°Ra is enhanced, according to collective
model estimates [6,7] by two or three orders of magnitude
over that of '®”Hg, the atom with the best experimental
limit on its EDM [8].

Why is the uncertainty an order of magnitude, a fac-
tor large enough to deter experimentalists? The matrix
element of Hr depends on the nuclear spin distribution,
a delicate quantity. In simple collective models (such as
the particle-rotor model) a single valence nucleon carries
all the spin. In reality, however, the valence nucleon polar-
izes the core, an effect that can alter the spin distribution
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Fig. 1. Contours of constant density for a series of even-N radium isotopes. Contour lines are drawn for densities p = 0.01,

0.03,0.07,0.11, and 0.15 fm 3.

substantially. Even without core polarization, the matrix
element of Hr depends sensitively on the wave function
of the valence nucleon. To reduce the uncertainty in the
Schiff moment to a reasonable level, we need a state-of-the
art calculation.

4 Calculation of Schiff moment in 22°Ra

In ref. [2] we used the program HFODD [9] to do a
completely self-consistent Skyrme-mean-field calculation
of the intrinsic ground state of 22Ra. The code allows the
simultaneous breaking of rotational invariance, P, and T
The first two are needed to obtain octupole deformation,
the last to polarize the core (i.e. break Kramers degener-
acy). HFODD cannot yet treat pairing when it allows T
to be broken, but pairing in T-odd channels is poorly un-
derstood. No no existing codes can do more than HFODD
in odd-A octupole-deformed nuclei.

We used the Skyrme interactions SIII, SkM*, SLy4,
and SkOQ’, the last our favorite because it was tuned in
ref. [10] to treat spin degrees of freedom (particularly
isovector spin excitations). Figure 1 shows the shapes pro-
duced by SkO’ in the even Ra isotopes. The nucleus 22°Ra,
with N = 137, will clearly have significant amounts of
both quadrupole and octupole deformation.

Figure 2 shows three parity-violating intrinsic quanti-
ties. In the top panel is the ground-state octupole deforma-
tion as a function of neutron number. The trend mirrors
that in the density profiles shown earlier. The second panel
shows the absolute values of intrinsic dipole moments Dy,
along with experimental data extracted from FE1 transi-
tion probabilities [11]. Both the experimental and calcu-
lated values change sign between N = 134 and N = 138,
illustrating the delicacy of this quantity. None of the forces
precisely reproduces the trend through all the isotopes,
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Fig. 2. The predicted first-order octupole deformations (top),
absolute values of the predicted intrinsic dipole moments (mid-
dle), and the predicted intrinsic Schiff moments (bottom) for
four Skyrme interactions in a series of even-N radium isotopes.
The absolute values of the experimental intrinsic dipole mo-
ments are also shown.
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but the comparison has to be taken with a grain of salt
because “data” derive from transitions between excited ro-
tational states. The intrinsic Schiff moment (S, ), as noted
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Table 1. Intrinsic-state expectation values of important oper-
ators in Ur, in the neutron-proton scheme (in 1072 fm™*).

(on - Vpn) (on-Vpp)
SII1(0) —0.577 —0.491
SkM*(0) —0.619 —0.120
SLy4(0) —0.628 ~0.050
SkO’(0) ~0.331 —0.013
SkO' —0.320 —0.114
particle-rotor [7] -1.2 -0.8

above, is more collective and under better control, as the
bottom panel of the figure shows.

Finally, what about H7? In the limit of infinite pion
mass, eq. (3) reduces to an effective one-body potential

A
g
Ur(r) = —5—— Z OiTzi
2mimy p
[(Go+292)V p1(r) =1V po(r)] +exchange, (7)

where pg and p; are the isoscalar and isovector densities
and exchange terms are probably negligible. Table 1 shows
matrix elements of the most important operators in Ur.
The zeros following the interaction names mean that
the core-polarizing parts of the interactions, which were
never fit for the older forces, have been turned off. The
differences between the lines labeled SkO’(0) and SkO’
show the effects of core polarization. Our full SkO’ Schiff
moment for 22°Ra, with the finite-range force (though not
yet with exchange terms or short-range correlations), is

(8.)Ra = —1.90 ggo + 6.31g71 — 3.80 gga (efm®). (8)
A recent calculation for 1%°Hg [12] gave
(S.)11g = 0.0004 ggo + 0.055 g1 + 0.009 ggo (e fm®). (9)

Our Schiff moment, though smaller than particle-rotor es-
timates, is over 100 times larger (and significantly more
than that if g; is anomalously small) than that of 1% Hg.
Combined with an additional factor-of-three enhancement
from atomic physics [13], this result bodes well for upcom-
ing experiments [14] to measure the EDM of 2?°Ra.

5 Schiff moment of *°Hg

To be sure of the enhancement factor, and to discern the
consequences of existing EDM limits, we need to be more
confident of the Schiff moment of 9°Hg. Reference [12)]
predicts a very weak sensitivity to the isoscalar 7 NN cou-
pling go (the first coefficient in eq. (9)). J. de Jesus and
the author are calculating the Hg Schiff moment with the
same Skyrme interactions we used in Ra. Our approach is
to treat '®®Hg as a spherical core in the HFB approxima-
tion, and then include polarizing effects of the extra neu-
tron quasiparticle in perturbation theory by allowing it to
excite core vibrations, which we treat in QRPA. Figure 3
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Fig. 3. Leading contributions to the Schiff moment of 1°°Hg.
The vertical line is the valence neutron, the solid horizontal
line a Skyrme interaction, the dashed line Hr, the zig-zag line
the Schiff operator, and the filled oval an RPA bubble sum.

shows the leading diagrams in the approximation that
pairing effects are negligible (we include pairing in the ac-
tual calculations). The physics is similar to that included
in ref. [12], but our calculation is more self-consistent and
our use of several Skyrme interactions gives us a handle
on the uncertainty. Our preliminary (still unofficial) result
with SkO’ is
(S2)BE™ = 0.007 ggio + 0.067 ggy + 0.009 gz (efm?),
(10)
and each of the coefficients changes by factors of 2 or 3
when we change the Skyrme interaction. Our isoscalar co-
efficient is considerably larger than the one in eq. (9). We
will remove the tag “preliminary” as soon as we have ex-
plored the uncertainty a little more carefully.

Thanks go to collaborators M. Bender, J. Dobaczewski,
J. Friar, A.C. Hayes, J. de Jesus, and P. Olbratowski. This work
was supported by the U.S. DOE Grant DE-FG02-97ER41019.
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